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Abstract A compact and robust many-mode expansion of
potential energy surfaces (PES) is presented for anharmon-
ic vibrations of polyatomic molecules, where the individual
many-mode terms are approximated with various different
resolutions, i.e., electronic structure methods, basis sets, and
functional forms. As functional forms, the following three
representations have been explored: numerical values on a
grid, cubic spline interpolation, and a Taylor expansion. A
useful index is proposed which rapidly identifies important
many-mode terms that warrant a high resolution. Applica-
tions to water and formaldehyde demonstrate that the present
scheme can increase the efficiency of the PES computation
by a factor of up to 11 with the errors in anharmonic vibra-
tional frequencies being no worse than ∼10 cm−1.

1 Introduction

Recent advances in molecular theory have made it feasible
to simulate anharmonic rovibrational spectra of polyatomic
molecules from the first principles [1]. The vibrational self-
consistent field (VSCF) method [2,3] provides a means to
find the variationally “best” one-mode functions in which the
total vibrational wavefunction is constructed as their product.
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The dimensionality of the Schrödinger equation is greatly
reduced by dividing the fully coupled equation to many one-
mode equations with associated effective one-dimensional
potential energy curves. However, the effective potential
derived from a full dimensional PES still suffers from the
high dimensionality of the system. Carter et al. [8] have
introduced a hierarchical expansion of the PES in terms of
the couplings among the normal coordinates (see Eq. (1)).
This expansion of the PES is rapidly convergent typically at
n = 2 − 4, reducing the computational cost of its evaluation
from M f to Mn , where M is the number of grid points along
a normal coordinate and f is the number of internal degrees
of freedom. The truncated PES can be obtained either by on-
the-fly ab initio electronic structure calculations at every grid
point [9–12] or by ab initio derived potential energy functions
(PEFs) [13–34]. The VSCF method and its extensions [4–7]
combined with the electronic structure theory have enabled
the vibrational structure calculations of polyatomic mole-
cules.

In spite of its singular importance, Carter and co-workers’
n-mode representation (nMR) method can be further
enhanced. The nMR method, as it is implemented, treats
all the vibrational modes and couplings in an equal manner
and uses the same level of electronic structure methods and
functional forms for all. As a result, the computational efforts
are devoted mostly for evaluating numerous higher order cou-
pling terms. This is a wasteful procedure since these terms are
almost always less important compared to the leading, lower
order coupling terms. Furthermore, in complex systems, we
often place emphasis on a specific mode of interest rather than
on the whole feature of the spectrum, again suggesting the use
of different treatments for different orders of coupling. It is
hence desirable to have an extended nMR-PES that incorpo-
rates multiple resolutions (collectively referring to the level
of electronic structure theory, basis set size, functional forms
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of the surface, etc.), where important terms are determined at
higher resolutions and less important ones at progressively
lower resolutions. In other words, in addition to truncating
the series of expansion of PES according to dimensionality,
we should adjust or even optimize the resolution for each
expansion term according to its importance.

The idea of using multiresolution in approximating the
PES has been explored by several researchers. Bürger
et al. [18,19], Boese and Martin [20], and Begue et al. [21]
employed dual level approaches in deriving the quartic force
field: an accurate and expensive electronic structure method
for harmonic force constants and an approximate method
for anharmonic force constants. Carter and co-workers have
extended the original nMR-PES by introducing the “intrin-
sic” n-mode coupling terms each of which can be determined
with different accuracy (or grid) based on least square fittings
[24] or Hermite interpolations [25]. They showed that the
numbers of data points along each normal mode for three- and
four-mode coupling terms can be only one quarter of those
of one- and two-mode coupling terms without deteriorating
the quality of the results significantly. In their paper, the use
of multiple electronic structure levels was also suggested,
but not implemented. The most thorough investigation in
this direction thus far has been conducted by Rauhut [26].
In this work, two different electronic structure levels were
employed to compute different intrinsic n-mode coupling
terms. Later this dual-level approach was extended to multi
levels by Rauhut’s group [27,28]. In addition, he explored
highly effective strategies to minimize the computational cost
of generating PES by introducing an automatic and iterative
fitting procedure of the higher order surfaces with minimal
number of data points and surface area. Together with a con-
venient pre-screening criterion, Rauhut was able to achieve
the remarkable speedup by a factor of 18,000 in generating
PES of 1,2,5-oxadiazole (a 7-atom system) relative to a con-
ventional method.

Following these preceding works, we examine the usage
of further flexible resolutions to represent the intrinsic
n-mode coupling terms. The strongly anharmonic terms are
determined with high resolutions, i.e., by accurate functions
and electronic structure methods, while the others are evalu-
ated in a more approximate way, for example, by the quartic
force field (QFF) derived from a lower level of theory. It
is known that QFF reliably represents moderate anharmo-
nicities and is rapidly computable especially when analytic
Hessians are available [13–22]. For this purpose, we first
show that the intrinsic mode coupling terms are obtained
independently from a reduced dimensional PEF determined
at an arbitrary resolution. The explicit forms of the piecewise
PEF are then explored, i.e., grid representations, interpola-
tion functions, and Taylor series expansions. These functions
can be determined by various electronic structure theories
ranging from coupled-cluster to density functional theory.

The mixed usage of the above functions in representing the
nMR-PES is new in the multiresolution context and is shown
to be highly effective.

It is essential to distinguish the important mode coupling
terms from the others in advance of the full calculation of
the PES in actual implementations of the above scheme. For
this, we propose a rapidly computable index that roughly
estimates the strength of mode coupling terms. With the
aid of this index, we can introduce multiresolution within
one n-mode coupling term: for example, a higher resolu-
tion for important three-mode terms and a lower resolution
for less important three-mode terms. Furthermore, we exam-
ine the use of normal coordinates determined by the lower
level of electronic structure theory to represent the anhar-
monic potential, which enables to bypass the calculations of
equilibrium geometry and Hessian matrix at a higher level
of theory. This scheme has been successfully employed by
Rheinecker and Bowman to generate the potential energy and
dipole moment surfaces in simulating the infrared spectrum
of Cl−H2O cluster [33,34]. It is also shown in this work that
the vibrational frequencies obtained from this scheme incur
only small deviations from those of the conventional method.

2 Multiresolution PES

2.1 Construction of the nMR-PES from piecewise PEFs

In the VSCF method, the potential energy surface (PES) of
f mode systems is expanded in terms of mode couplings as
[8],

V (Q) =
∑

i1

Vi1(Qi1)+
∑

i1<i2

Vi2(Qi1 , Qi2)

+ · · · +
∑

i1<···<im

Vim (Qi1 , . . . , Qim )

+ · · · + Vi f (Q1, . . . , Q f ), (1)

where Qi is the i th normal coordinate, im denotes a com-
pound index of (i1i2 · · · im), and Vim represents an m-mode
coupling term,

Vim (Qi1 , . . . , Qim ) = V (0, . . . , 0, Qi1 , 0, . . . , 0,

Qim , 0, . . . , 0)

−
m−1∑

l=1

∑

il∈im

Vil (Qi1, . . . , Qil ). (2)

Note that the energy at the origin is set to zero, V (0) = 0.
The mode coupling terms satisfy the following relation (a
proof given in the appendix),

Vim (Qi1 , . . . , Qim ) = 0, if any Qik = 0. (3)
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This relation ensures the mode-coupling expansion in Eq. (1)
to exactly reproduce the full dimensional PES at the f th
order. The PES truncated at the nth order is referred to as an
n-mode representation of the PES (nMR-PES),

V (Q) � V nMR(Q) =
∑

i1

Vi1(Qi1)+
∑

i1<i2

Vi2(Qi1 , Qi2)

+
∑

i1<i2<i3

Vi3(Qi1, Qi2 , Qi3)

+ · · ·+
∑

i1<···<in

Vin (Qi1, . . . ,Qin ). (4)

It is desirable to express this nMR-PES equation in such
a way that mode coupling terms can be determined at dif-
ferent approximations of the electronic structure theory and
different functional forms; for example, low-order terms with
large contributions by more accurate, expensive methods, and
high-order terms by more approximate, inexpensive meth-
ods. The conventional formalism, however, does not imme-
diately allow such a treatment because each mode coupling
term defined recursively by Eq. (2) does no longer satisfy the
condition (3) when more than one resolutions are used.

“Intrinsic” n-mode coupling term enables to circumvent
this problem [24–26]. Consider a set of piecewise reduced
dimensional PEFs {Fim (Qi1, . . . , Qim )}, each of which
approximately represents a subspace of the configuration
space associated with one resolution (e.g., a certain elec-
tronic structure method and functional form). The intrinsic
m-mode coupling term is obtained from Fim as

G im (Qi1, . . . , Qim ) = Fim (Qi1 , . . . , Qim )

−
m−1∑

l=1

∑

jl∈im

gjl
im
(Q j1, . . . , Q jl ), (5)

where gjl
im

represents an l-mode coupling term of Fim ,

gjl
im
(Q j1, . . . , Q jl )= Fim(0, . . . , 0,Q j1 , 0, . . . , 0,Q jl , . . . , 0)

−
l−1∑

l ′=1

∑

jl′ ∈jl

g
jl′
im
(Q j1, . . . , Q jl′ ), (6)

determined at one resolution. Note that G im = gim
im

. For exam-
ple, the intrinsic one-, two-, and three-mode coupling terms
are written as,

Gi (Qi ) = Fi (Qi ), (7)

Gi j (Qi , Q j ) = Fi j (Qi , Q j )− Fi j (Qi , 0)

−Fi j (0, Q j ), (8)

Gi jk(Qi , Q j , Qk) = Fi jk(Qi , Q j , Qk)− Fi jk(Qi , Q j , 0)

−Fi jk(Qi , 0, Qk)− Fi jk(0, Q j , Qk)

+Fi jk(Qi , 0, 0)+ Fi jk(0, Q j , 0)

+Fi jk(0, 0, Qk). (9)

It is of particular importance that each term is associated with
a single PEF and assigned the resolution on which the PEF
is based.

It can be easily verified that the intrinsic mode coupling
term satisfies the condition (3),

G im (Qi1 , . . . , Qim ) = 0, if any Qik = 0. (10)

Thus, these terms, obtained from the set of PEFs, {Fim }, can
be summed to give an extended nMR-PES as,

V nMR(Q) =
∑

i1

Gi1(Qi1)+
∑

i1<i2

G i2(Qi1 , Qi2)

+ · · · +
∑

i1<···<in

G in (Qi1 , . . . , Qin ). (11)

Note that Eq. (10) ensures the correct behavior of the nMR
expansion at the limit. Each term in Eq. (11) can now be deter-
mined with different resolutions enabling the multiresolution
nMR-PES. This scheme reduces to the original nMR-PES
when one resolution is used for all the terms.

As mentioned above, the use of multiple resolutions is not
permitted in the original nMR-PES due to the dependence
of the high-order terms on the lower order terms (Eq. (2)).
We assume that the previous works on multiresolution nMR-
PES [24–26] are based on Eq. (5) instead of Eq. (2), since
otherwise the expansion would break down both conceptu-
ally and numerically. To our best knowledge, however, the
difference between the two schemes has not been clearly
stated before the present work. Here, the extended nMR-PES
is presented through Eq. (5), which gives an actual procedure
to compute the mode coupling terms at different resolutions,
together with an emphasis on the condition (10) to achieve
the correct nMR expansion. Following the convention, we
term G im the “intrinsic” mode coupling term.

2.2 Practical forms of the piecewise PEFs

In practical implementations, the explicit functional forms of
the piecewise PEFs need to be specified. There are a number
of candidates that may be used for the present purpose, and
the search for optimal forms as well as their combinations is
an important issue. Here, we explore several forms that are
found useful in the subsequent applications.

2.2.1 Direct PEF on the grid

In VSCF solvers, the potential energy values are required
at numerical grid points, the distribution of which is deter-
mined by, for example, the discrete variable representation
(DVR) method [35]. These energy values can be obtained
on-the-fly from electronic structure calculations. These data
points may be regarded as a PEF in a grid representation,
which is denoted as direct PEF in the following. Direct PEF
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is exact in the sense that it does not rely on any assumed
functional form. If all the mode coupling terms in nMR-PES
are derived from direct PEF of the same ab initio quality, the
VSCF based on this PES reduces to the direct VSCF method
[9–12]. Its application, however, is severely limited due to
the exponential increase in the number of grid points with
respect to the dimension of the PEF (m) as Mm , where M
is the number of grid points along each normal coordinate.
It is prohibitive to calculate direct PEFs for the higher order
coupling terms (m ≥ 4), even with inexpensive electronic
structure methods. Direct PEF can most suitably represent a
few, very important, low-order coupling terms. In the present
study, 1MR terms are always derived from direct PEFs.

2.2.2 Interpolation functions

The regions of the PES far from the equilibrium geometry
usually have smaller influence on the low-lying vibrational
energies and wavefunctions. This fact suggests the use of
a more approximate treatment for less important regions of
the PES. Previously, several authors have proposed to use
interpolation [25,26] or fitting [24] functions to represent
the piecewise PEFs. The scheme that incorporates the deriv-
atives of the PES [23,29] may also be a good candidate.

In this study, we have employed a standard cubic spline
interpolation technique to represent the piecewise PEFs. The
m-dimensional PEF is generated from recursive spline inter-
polations of one-dimensional cuts with x grid points along
each normal coordinate (denoted Sx). The construction of Sx
needs potential energy values at xm grid points, so that a con-
siderable saving of the computational cost can be achieved
by adopting x < M , though the unfavorable scaling with
respect to the dimension m is not removed. The interpolation
points must be carefully selected, for the resulting vibrational
frequencies are very sensitive to their positions. Preliminary
calculations have yielded the best performance when these
points are placed according to the Gauss–Hermite quadra-
ture (perhaps, placing at the DVR grid points is generally
effective). In this way, the use of spline functions obtained
with M interpolation points is mathematically equivalent to
the use of energy values at the original numerical grid, i.e.,
direct PEF. The question is, therefore, how accurate are the
PEFs interpolated with the smaller grid (xm) relative to the
ones defined for the original grid (Mm).

2.2.3 Taylor expansion PEF

The mode coupling terms may be alternatively written in a
Taylor series expansion as,

G im (Qi1 · · · Qim ) =
∞∑

km

ckm Qk1
i1

· · · Qkm
im

k1! · · · km ! , (12)

where the coefficients, ckm , are the derivatives of the PES
at the equilibrium geometry with respect to normal coordi-
nates. If the expansion is truncated at the fourth-order, i.e.,∑m

j k j ≤ 4, then Eq. (12) reduces to the quartic force field
(QFF) [13–22]. In this case, the mode coupling terms are
written as

GQFF
i = 1

2
cii Q2

i + 1

6
ciii Q3

i + 1

24
ciii i Q4

i , (13)

GQFF
i j = 1

2
(cii j Q2

i Q j + ci j j Qi Q2
j )

+1

6
(ciii j Q3

i Q j + ci j j j Qi Q3
j )+ 1

4
cii j j Q2

i Q2
j ,

(14)

GQFF
i jk = ci jk Qi Q j Qk + 1

2
(cii jk Q2

i Q j Qk + ci j jk Qi Q2
j Qk

+ci jkk Qi Q j Q2
k), (15)

GQFF
i jkl = ci jkl Qi Q j Qk Ql . (16)

The third- and fourth-order derivatives, ci jk and ci jkl , can be
computed by numerical differentiations of the energy [16],
or the Hessian matrix [11]. QFF is valid by definition only
near the origin (within the convergence radius), and may not
be suitable to represent strongly anharmonic terms or to be
used in calculations of highly excited states. Nevertheless, the
advantage of QFF lies in its capability to reproduce numer-
ous, moderate anharmonicity with a much less computational
cost compared to direct PEF and interpolation PEF.

It is also important to note that the Taylor expansion PEF
can be integrated with much less computational cost, where
the multidimensional integral can be evaluated by a product
of one-dimensional integrals over the one-mode functions. A
fast integration algorithm will make it easier to incorporate
the higher order terms in the vibrational state calculations.

2.3 Detection of the strength of mode coupling terms

The number of n-mode coupling terms increases very rap-
idly with the vibrational degrees of freedom ( f ) as ∼ f n .
Therefore, it is important to devise a simple index which
inexpensively permits identifying the important terms that
should be evaluated at a high resolution from the others that
can be obtained at a lower resolution. The strength of mode
coupling terms is determined by the two factors: the strength
of anharmonicity and the resonance condition.

Let us first consider the former. Define two grid points
along each normal coordinate denoted Q(+)

i and Q(−)
i for

the i th mode as,

Q(±)
i = ±

√
2h̄

ωi
, (17)

where ωi denotes the harmonic frequency of the i th mode.
Note that the harmonic potential gives an energy of h̄ωi
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at these positions, i.e., Q(+)
i takes a small value for high

frequency modes, and vice versa. Together with the origin,
the energy values at the 3n grid points are computed by the
electronic structure calculations to evaluate the n-mode cou-
pling terms on the grid. The strength of the anharmonic poten-
tial may be expressed as an average of these values over the
grid. For two-mode coupling terms, for example, the index
is given as

σ
(α,β)
i j = E(Q(α)

i , Q(β)
j )− E(Q(α)

i , 0)− E(0, Q(β)
j ), (18)

σi j = 1

22

∣∣∣∣∣∣

∑

α,β

σ
(α,β)
i j

∣∣∣∣∣∣
, (19)

where α and β denote the signs. The indices for higher order
terms can be defined analogously as,

σin = 1

2n

∣∣∣∣∣∣

∑

α,β,...,γ

σ
(α,β,...,γ )

in

∣∣∣∣∣∣
. (20)

The resonance condition for the two- and three-mode cou-
pling terms is met when,

h̄δi j = 1

2!
1

|2ωi − ω j | + 1

3!
1

|3ωi − ω j | + 1

3!
1

|ωi − ω j |
+ 1

4!
1

|4ωi − ω j | + 1

4!
1

|2ωi − ω j | , (21)

h̄δi jk = 1

|ωi + ω j − ωk |
+ 1

2!
[

1

|ωi + 2ω j − ωk | + 1

|2ωi + ω j − ωk |
]

+ 1

3!
[

1

|3ωi + ω j − ωk | + 1

|ωi + 3ω j − ωk |
]

+ 1

3!
[

1

|ωi + ω j − ωk | + 1

|ωi + ω j − ωk |
]

+ 1

2!2!
1

|2ωi + 2ω j − ωk | . (22)

In our implementations, a small number (∼10 cm−1) is added
to the denominator to avoid a division by zero. Finally, the
proposed index is expressed as

ξin = σin × δin . (23)

Note that the index is a dimensionless number. Although
additional costs are incurred by the calculation of the energy
on the grid, these indices are relatively insensitive to the level
of electronic structure theory employed, and hence can be
estimated at a low-level electronic structure theory.

(a)

(b)

Fig. 1 The proposed indices detecting the importance of mode cou-
pling terms obtained by the B3LYP/cc-pVDZ, CCSD/cc-pVDZ, and
CCSD(T)/cc-pVTZ level of theory, for a H2O and b H2CO

3 Applications

3.1 Strength of mode coupling terms

We first examine the strength of mode coupling terms in H2O
and H2CO using the indices proposed in the previous section.
The equilibrium geometry and the harmonic frequencies of
H2O and H2CO were first computed by the B3LYP [36,37],
CCSD [38,39], and CCSD(T) levels of theory. The B3LYP
and CCSD calculations were performed with the cc-pVDZ
[40] basis sets, and the CCSD(T) calculation with the cc-
pVTZ basis sets. The core orbital of oxygen and carbon was
kept frozen in the coupled-cluster calculations. In the present
work, all coupled-cluster calculations were performed using
the ACES II program package [41], and the B3LYP calcula-
tions by using the GAUSSIAN 03 program package [42]. The
resulting normal coordinates and harmonic frequencies were
employed to calculate the indices for the two- and three-mode
coupling terms; 27 and 232 points of ab initio energy were
required to evaluate the strength of the anharmonic potential
of H2O and H2CO, respectively. Figure 1 presents the indi-
ces for these molecules obtained by the B3LYP/cc-pVDZ,
CCSD/cc-pVDZ, and CCSD(T)/cc-pVTZ level of theory. It
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Table 1 The two- and three-mode coupling terms of H2O and H2CO
classified into five categories based on the proposed index (ξ ) obtained
by the B3LYP/cc-pVDZ level of theory

H2O H2CO

Term ξ Term ξ Term ξ

vSa (>1) (1,3) 1.391 (1,5) 1.769

Sb (0.25–1) (1,2) 0.442 (3,5) 0.949 (4,5) 0.425

(2,3) 0.427 (1,3,6) 0.551 (1,4) 0.382

(1,3) 0.505 (1,6) 0.374

(3,5,6) 0.434 (5,6) 0.356

Mc (0.1–0.25) (1,2,3) 0.133 (1,3,4) 0.169 (4,5,6) 0.115

(3,4,5) 0.158 (1,4,6) 0.109

(1,4,5) 0.143 (1,5,6) 0.100

Wd (0.05–0.1) (2,5,6) 0.082 (4,6) 0.062

(1,3,5) 0.071 (1,2,6) 0.057

(2,4,5) 0.064

vWe (<0.05) (2,5) 0.046 (2,3) 0.017

(1,2,4) 0.037 (1,2,5) 0.012

(3,6) 0.037 (2,3,6) 0.012

(2,3,5) 0.028 (3,4) 0.011

(1,2) 0.025 (2,4,6) 0.005

(1,2,3) 0.023 (2,6) 0.004

(3,4,6) 0.022 (2,3,4) 0.003

(2,4) 0.017

a Very Strong
b Strong
c Medium
d Weak
e Very Weak

is observed that appreciable deviations are found only for
four three-mode coupling terms of H2CO, (Q1, Q2, Q4),
(Q1, Q2, Q6), (Q2, Q4, Q5), and (Q2, Q5, Q6), which are
caused due to the accidental near degeneracy of these combi-
nations; for example, |ω5−ω4−ω2| is obtained as 101, 7, and
25 cm−1 by B3LYP, CCSD, and CCSD(T), respectively. The
indices are almost insensitive to the level of theory employed,
and hence can be reliably evaluated by a low-level of elec-
tronic structure method (e.g., B3LYP/cc-pVDZ).

The mode coupling terms of H2O and H2CO are clas-
sified into five categories according to the indices obtained
by the B3LYP/cc-pVDZ method as presented in Table 1:
(1) Very Strong (ξ > 1), (2) Strong (0.25 < ξ < 1), (3)
Medium (0.1 < ξ < 0.25), (4) Weak (0.05 < ξ < 0.1),
and (5) Very Weak (ξ < 0.05). “Very strong” mode cou-
plings are, as expected, found for the one between the sym-
metric and anti-symmetric stretching modes of the OH and
CH bonds characterized by ξ13 = 1.391 and ξ15 = 1.769,
respectively. Two three-mode terms of H2CO, (Q1, Q3, Q6)

and (Q3, Q5, Q6), are found as “strong” terms. The latter
is a very important term which directly contributes to Fermi

resonance between ν5 and ν3 + ν6 (see below). It is also
interesting to note that the index for the three-mode term,
ξi jk , trends to be smaller than ξi j , ξik , and ξ jk . This observa-
tion is consistent with Rauhut’s pre-screening condition [26]
in which the three-mode term, (i, j, k), is neglected if the
associated pairs, (i, j), ( j, k), and (k, l), are smaller than a
screening threshold. For larger molecules, it may be useful
to combine this condition with the present scheme.

3.2 Vibrational state calculations

3.2.1 Direct VCI calculations

The anharmonic vibrational wavefunctions and frequencies
were first calculated by the direct VSCF and vibrational con-
figuration interaction (VCI) method [11] using the SINDO

program [43]. The number of points in a Gauss–Hermite
quadrature grid was set to 11 for each coordinate, and ab
initio energies for the 3MR-PES were calculated at 1,331
and 21,566 numerical grid points for H2O and H2CO, respec-
tively, at the CCSD(T)/cc-pVTZ level of theory. The energy
on the grid was scanned by the SINDO program, which made
use of the molecular symmetry (C2v) to avoid unnecessary
electronic structure calculations at symmetrically nonunique
points. It also had a fault recovery measure, which automat-
ically interpolated or extrapolated the energies when energy
calculations failed at highly strained geometries. In H2O, 500
low-lying VSCF configurations were selected for VCI cal-
culations. VCI calculations for H2CO were carried out by
selecting the VSCF configurations such that each quantum
number was excited up to 6, and the sum of all quantum num-
ber was less than 6 (924 configurations in total). The lowest
lying 14 and 80 vibrational states have been computed for
H2O and H2CO, respectively, by direct VCI method based
on the 2MR- and 3MR-PES. The results of direct VCI/3MR
calculation serve as reference values for the following calcu-
lations with approximate PESs.

3.2.2 Multiresolution PES

Multiresolution PESs (MultiR-PES) for H2O and H2CO have
been constructed by combining mode coupling terms derived
from various resolutions (functional form and electronic
structure method). In view of the proposed index, one resolu-
tion was assigned to each category of the mode coupling term
presented in Table 1. More specifically, the one-mode terms
and the “very strong” mode coupling terms were represented
by direct PEF (i.e., S11) at the CCSD(T)/cc-pVTZ level
of theory (denoted direct/CCSD(T)/cc-pVTZ), the “strong”
terms by S9/CCSD(T)/cc-pVTZ, the “medium” terms by
S7/CCSD/cc-pVDZ, the “weak” terms by S5/B3LYP/cc-
pVDZ, and the “very weak” terms by QFF/B3LYP/cc-pVDZ.
QFF was constructed by numerical differentiations of the
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Table 2 Vibrational energy levels of H2O obtained from the VCI method based on two types of multiresolution PES (MultiR-PES), together with
direct VCI/2MR and 3MR results, and the experimental values

MultiR-PES1a MultiR-PES2b Direct2MR Direct3MR Exp.c

ν2 1604.5 (0.1) 1604.3 (0.2) 1601.6 (2.9) 1604.4 1594.7

2ν2 3172.8 (0.0) 3172.2 (0.6) 3172.5 (0.2) 3172.7 3151.6

ν1 3666.1 (0.4) 3666.0 (0.3) 3656.5 (9.2) 3665.7 3657.1

ν3 3745.3 (0.8) 3745.3 (0.8) 3723.5 (21.0) 3744.5 3755.9

3ν2 4701.6 (0.0) 4700.7 (0.9) 4709.9 (8.3) 4701.6 4666.8

ν1ν2 5255.2 (1.0) 5254.9 (0.7) 5225.3 (28.9) 5254.2 5235.0

ν2ν3 5306.9 (1.7) 5306.1 (0.9) 5253.2 (52.0) 5305.2 5331.3

4ν2 6188.0 (1.6) 6187.9 (1.6) 6210.0 (23.7) 6186.4 6134.0

ν12ν2 6807.6 (1.4) 6807.0 (0.9) 6758.5 (47.6) 6806.1 6775.1

2ν2ν3 6833.7 (2.1) 6832.0 (0.4) 6761.6 (70.0) 6831.6 6871.5

2ν1 7216.6 (1.7) 7216.4 (1.4) 7162.8 (52.1) 7214.9 7201.5

ν1ν3 7250.7 (2.3) 7250.7 (2.3) 7189.9 (58.5) 7248.4 7249.8

2ν3 7429.2 (1.9) 7429.4 (2.1) 7380.6 (46.7) 7427.3 7445.0

MADd 1.2 1.0 32.4

The deviations from direct VCI/3MR results are presented in parentheses. Units in cm−1

a Multiresoluiton PES based on normal coordinates derived from the CCSD(T) method
b Multiresolution PES based on normal coordinates derived from the B3LYP method
c Ref. [44]
d Mean absolute deviations from direct VCI/3MR results

Hessian matrix, which required 7 and 13 points of Hessian
calculations for H2O and H2CO, respectively. Note that the
QFF based on the B3LYP method can be obtained very effi-
ciently by making use of the analytical Hessian available in
many implementations. Spline functions were constructed in
the same way as direct PEFs, but with much reduced num-
ber of grid points for electronic structure calculations of the
energy. In this way, a remarkable speed-up in generating PES
was achieved by a factor of 4 and 11 for H2O and H2CO,
respectively, compared to the direct 3MR-PES. This com-
putational cost reduction is shown to cause only negligibly
small errors in the following.

In the present scheme, the normal coordinates of the sys-
tem need to be computed in advance of the PES scan. The
computational cost of this step, which involves the calcula-
tions of the equilibrium geometry and the Hessian matrix,
grows rapidly with system size, and becomes a severer com-
putational bottleneck than the PES construction. Therefore, it
is useful to investigate if the normal coordinates derived from
the lower level of theory can be used in defining the PEFs and
in the subsequent vibrational state calculations. Indeed, the
geometrical parameters and the normal displacement vec-
tors are often obtained with sufficient accuracy by a rela-
tively low level of theory (though the harmonic frequencies
are not). This fact has motivated us to construct MultiR-PES
in terms of two different normal coordinates derived from
the CCSD(T)/cc-pVTZ and B3LYP/cc-pVDZ level of the-
ory (denoted MultiR-PES1 and MultiR-PES2, respectively).

3.2.3 Results

Vibrational energy levels obtained from the VCI method
based on MultiR-PES1 and MultiR-PES2 are presented in
Tables 2 and 3 for H2O and H2CO, respectively, together
with direct VCI/2MR and 3MR results, and the experimental
values. Table 2 shows that the vibrational energies of H2O
obtained from the two MultiR-PESs are both in excellent
agreement with the reference values. The mean absolute
errors are 1.2 and 1.0 cm−1 for MultiR-PES1 and MultiR-
PES2, respectively, and the maximum error is 2.3 cm−1. The
accuracy within 3 cm−1 is satisfactory at this stage, in view
of the fact that the electronic structure method at the
CCSD(T)/cc-pVTZ level itself causes an error of ∼ 20 cm−1

on average. On the other hand, the results of direct VCI/2MR,
which neglects the three-mode coupling term, are found with
a large mean absolute error of 32.4 cm−1. Therefore, it is
essential to include the three-mode coupling term even at
least in an approximate manner, i.e., at S7/CCSD/cc-pVDZ
level.

The VCI results for H2CO based on both MultiR-PES1
and MultiR-PES2, as presented in Table 3, are also in excel-
lent agreement with the corresponding direct VCI/3MR
results; the mean absolute deviations are 7.6 and 6.9 cm−1,
respectively. In contrast, direct VCI/2MR calculation results
in large errors. While for some vibrational bands, it gives
decent agreement within a few wavenumber, for other bands
errors are excessively large. For example, the errors for ν5
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Table 3 Vibrational energy levels of H2CO obtained from VCI method based on two types of multiresolution PES (MultiR-PES), together with
direct VCI/2MR and 3MR results, and the experimental values

MultiR-PES1b MultiR-PES2c Direct2MR Direct3MR Exp.d

ν4 1157.6 (0.1) 1156.9 (0.8) 1155.4 (2.3) 1157.7 1167.4

ν6 1250.3 (2.7) 1250.8 (3.2) 1247.0 (0.7) 1247.6 1249.6

ν3 1502.4 (3.5) 1508.7 (2.9) 1504.7 (1.1) 1505.8 1500.2

ν2 1756.7 (8.0) 1750.5 (1.7) 1749.1 (0.3) 1748.7 1746.1

2ν4 2308.9 (0.5) 2307.4 (2.0) 2309.1 (0.3) 2309.4 2327.5

ν4ν6 2411.9 (5.2) 2411.3 (4.6) 2402.2 (4.5) 2406.8 2422.4

2ν6 2497.1 (5.3) 2497.6 (5.8) 2490.4 (1.4) 2491.8 2496.1

ν3ν4 2661.7 (0.3) 2666.8 (4.8) 2657.3 (4.6) 2662.0 2667.1

ν3ν
a
6 2694.3 (7.8) 2717.9 (15.8) 2752.5 (50.4) 2702.0 2718.6

ν1 2775.8 (2.4) 2777.1 (1.1) 2764.7 (13.4) 2778.1 2782.2

νa
5 2846.0 (4.9) 2835.7 (5.4) 2773.5 (67.6) 2841.1 2843.0

ν2ν4 2907.7 (9.5) 2899.9 (1.6) 2896.3 (2.0) 2898.3 2906.0

ν2ν1 3004.8 (1.6) 3007.2 (0.9) 2991.0 (15.4) 3006.3 2998.1

2ν3 3016.9 (6.7) 3016.4 (6.2) 3006.5 (3.7) 3010.2 3000.6

ν2ν3 3253.3 (6.9) 3253.1 (6.7) 3244.3 (2.1) 3246.4 3239.0

3ν4 3460.0 (0.7) 3457.8 (3.0) 3465.8 (5.1) 3460.7 3471.6

2ν2 3494.2 (16.6) 3481.0 (3.4) 3479.4 (1.8) 3477.6 3480.7

2ν4ν6 3570.1 (7.5) 3568.4 (5.8) 3557.1 (5.5) 3562.6 3586.6

ν22ν6 3665.9 (10.1) 3665.0 (9.1) 3647.8 (8.1) 3655.8 3673.5

3ν6 3742.3 (7.6) 3742.9 (8.3) 3733.4 (1.3) 3734.7 –

ν32ν4 3818.5 (3.1) 3822.4 (7.0) 3810.8 (4.5) 3815.3 3825.3

ν3ν4ν
a
6 3836.4 (8.7) 3858.1 (12.9) 3871.6 (26.4) 3845.1 3886.5

ν5ν
a
6 3912.3 (5.4) 3927.9 (10.2) 3900.4 (17.2) 3917.7 3937.4

ν1ν4 3927.5 (1.8) 3941.3 (12.0) 3908.0 (21.3) 3929.3 3940.2

ν3ν4ν
a
6 3988.7 (7.3) 3976.4 (4.9) 3975.8 (5.6) 3981.3 3995.8

ν1ν6 4016.2 (1.5) 4019.1 (4.5) 3994.9 (19.8) 4014.7 –

ν22ν4 4055.7 (9.9) 4046.2 (0.3) 3997.0 (48.8) 4045.8 4058.3

ν32ν6 4086.0 (8.7) 4075.9 (1.4) 4046.0 (31.3) 4077.3 4083.1

ν2ν4ν6 4152.0 (5.8) 4161.0 (3.2) 4140.9 (16.8) 4157.7 4163.9

2ν3ν4 4169.0 (2.0) 4178.5 (11.5) 4159.0 (8.1) 4167.0 –

2ν3ν6a 4172.2 (3.8) 4191.4 (23.0) 4230.7 (62.3) 4168.4 –

ν22ν6a 4242.1 (0.8) 4246.6 (3.7) 4231.4 (11.5) 4242.9 4248.7

ν1ν
a
3 4282.9 (6.9) 4273.0 (3.1) 4241.1 (34.9) 4276.0 4253.8

2ν3ν
a
6 4347.9 (4.5) 4341.2 (2.2) 4256.1 (87.2) 4343.3 –

ν2ν3ν4 4408.6 (11.4) 4406.0 (8.8) 4391.4 (5.8) 4397.2 4397.5

ν2ν3ν
a
6 4469.3 (3.0) 4476.9 (10.5) 4489.3 (23.0) 4466.3 4466.8

3ν3 4508.8 (5.5) 4524.4 (10.1) 4507.1 (7.2) 4514.3 –

ν1ν2 4535.9 (5.3) 4530.6 (0.0) 4511.5 (19.0) 4530.6 4529.4

ν2ν
a
5 4587.4 (16.9) 4573.6 (3.0) 4518.2 (52.3) 4570.5 4571.5

2ν2ν4 4627.7 (6.5) 4624.0 (2.9) 4620.8 (0.4) 4621.2 4624.3

4ν4 4640.7 (12.9) 4624.8 (3.0) 4643.3 (15.5) 4627.8 4629.0

3ν4ν6 4741.6 (9.7) 4737.9 (5.9) 4718.9 (13.0) 4732.0 4730.8

ν22ν3 4752.3 (7.7) 4747.9 (3.4) 4731.4 (13.1) 4744.5 4733.8

2ν2ν6 4768.0 (17.7) 4756.6 (6.3) 4738.6 (11.7) 4750.3 4741.9

2ν42ν6 4844.8 (14.4) 4841.2 (10.8) 4822.3 (8.1) 4830.4 4842.0
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Table 3 continued

MultiR-PES1b MultiR-PES2c Direct2MR Direct3MR Exp.d

ν43ν6 4933.6 (14.5) 4931.1 (11.9) 4911.6 (7.6) 4919.1 –

2ν2ν3 4972.8 (4.1) 4979.7 (11.1) 4966.7 (2.0) 4968.6 4955.2

ν33ν4 4987.6 (4.2) 4989.2 (5.8) 4985.7 (2.3) 4983.4 4977.1

2ν4ν
a
5 4990.5 (3.7) 4992.3 (5.5) 4985.9 (0.9) 4986.8 –

4ν6 5002.0 (10.9) 5001.4 (10.3) 4992.8 (1.8) 4991.0 –

ν4ν5ν
a
6 5064.8 (4.9) 5081.8 (12.0) 5052.0 (17.8) 5069.7 5043.7

ν12ν4 5082.6 (1.1) 5088.0 (4.3) 5080.2 (3.5) 5083.7 5092.4

ν32ν4ν
a
6 5146.2 (13.1) 5134.3 (1.2) 5082.9 (50.2) 5133.1 5104.0

ν52νa
6 5149.2 (3.1) 5176.8 (24.5) 5148.4 (3.9) 5152.3 5140.1

ν1ν4ν6 5181.7 (5.2) 5182.8 (6.3) 5175.3 (1.2) 5176.5 5151.0
3ν2 5216.2 (26.8) 5194.6 (5.2) 5186.9 (2.6) 5189.4 5177.6

ν23ν4 5219.8 (9.9) 5207.9 (2.0) 5193.8 (16.1) 5209.9 5205.2

ν3ν42νa
6 5254.5 (16.0) 5241.7 (3.2) 5218.9 (19.6) 5238.5 5244.1

ν12ν6 5261.9 (4.1) 5266.0 (8.2) 5236.7 (21.1) 5257.8 –

ν3ν4ν
a
5 5303.0 (15.0) 5323.5 (5.5) 5258.2 (59.8) 5318.0 5312.2

ν33νa
6 5312.0 (9.0) 5326.8 (5.8) 5311.9 (9.1) 5321.0 5321.3

ν22ν4ν
a
6 5330.1 (6.8) 5336.2 (12.8) 5331.2 (7.8) 5323.4 5325.6

ν3ν5ν
a
6 5340.8 (9.3) 5353.7 (22.2) 5333.4 (1.9) 5331.5 5353.2

2ν32ν4 5347.5 (9.8) 5361.4 (23.7) 5371.6 (33.9) 5337.7 5389.4

ν1ν
a
5 5390.7 (10.8) 5411.1 (9.7) 5386.0 (15.5) 5401.4 –

ν1ν3ν
a
4 5410.9 (1.5) 5415.4 (5.9) 5386.5 (22.9) 5409.5 5417.6

ν2ν42ν6a 5454.8 (17.3) 5439.5 (2.0) 5403.7 (33.8) 5437.5 5433.4

2νa
1 5466.2 (4.5) 5473.2 (2.5) 5434.2 (36.5) 5470.6 5462.7

2ν3ν4ν
a
6 5513.9 (13.9) 5504.1 (4.1) 5440.0 (60.0) 5500.0 5489.0

ν23ν6 5527.0 (16.6) 5515.0 (4.6) 5484.3 (26.1) 5510.4 5530.5

2ν32νa
6 5544.6 (1.1) 5553.6 (7.9) 5490.8 (54.8) 5545.7 5546.5

ν2ν32ν4 5574.2 (9.9) 5560.4 (3.9) 5521.6 (42.7) 5564.3 5551.3

ν1ν3ν
a
4 5579.7 (14.1) 5573.3 (7.8) 5552.5 (13.0) 5565.5 –

ν2ν4ν
a
5 5612.6 (2.6) 5617.3 (7.3) 5562.3 (47.7) 5610.0 5625.5

2ν3ν
a
5 5629.5 (23.0) 5650.7 (1.8) 5613.2 (39.3) 5652.5 –

2νa
5 5667.9 (4.9) 5677.5 (14.5) 5649.8 (13.2) 5663.0 5651.0

ν1ν2ν4 5689.2 (9.0) 5682.1 (1.9) 5661.6 (18.5) 5680.1 5680.0

3ν3ν4 5695.5 (5.7) 5706.6 (16.7) 5682.8 (7.0) 5689.8 –

ν2ν5ν
a
6 5696.2 (2.6) 5711.0 (17.4) 5692.1 (1.6) 5693.7 5687.9

MADe 7.6 6.9 18.4

The deviations from direct VCI/3MR results are presented in parentheses. Units in cm−1

a The weight of main configuration is less than 0.7
b Multiresolution PES based on normal coordinates derived from the CCSD(T) method
c Multiresolution PES based on normal coordinates derived from the B3LYP method
d Ref. [45]
e Mean absolute deviations from the direct VCI/3MR results

and ν3ν6 are found to be 67.6 and 50.4 cm−1. These two
states are strongly coupled through the three-mode term,

〈	VSCF
51

|V |	VSCF
3161

〉 = 〈ψ(3)0 ψ
(5)
1 ψ

(6)
0 |G356|ψ(3)1 ψ

(5)
0 ψ

(6)
1 〉,

(24)

where ψ(i)n is the nth state of the i th one-mode function in
the VSCF approximation. This interaction is well known as

Fermi resonance in formaldehyde [11]. The 2MR-PES, how-
ever, neglects the three-mode term, G356, and hence cannot
account for this resonance, which explains the large error
in energies and vibrational wavefunctions. Other bands with
large errors also manifest resonance to a varied degree
through three-mode interactions. Note that the proposed
index is capable of detecting the strong coupling in (3,5,6)
as shown in Table 1.
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Table 4 The equilibrium
geometries of H2O and H2CO
determined at the
B3LYP/cc-pVDZ and
CCSD(T)/cc-pVTZ levels of
theory, and the zero-point
averaged geometry based on the
VCI wavefunction obtained
from the two MultiR-PESs and
direct 3MR-PES

Units in Å and degrees
a Ref. [46]
b Ref. [47,48]
c Ref. [49]
d Ref. [50]

H2O B3LYP/cc-pVDZ CCSD(T)/ cc-pVTZ Exp.

re 0.969 0.959 0.958a

θe 102.7 103.6 104.4a

VCI/MultiR-PES2 VCI/MultiR-PES1 VCI/direct 3MR

r0 0.974 0.974 0.974 0.971b

θ0 103.4 103.4 103.4 104.7b

H2CO B3LYP/cc-pVDZ CCSD(T)/ cc-pVTZ Exp.

re(CH) 1.120 1.103 1.111c

re(CO) 1.204 1.210 1.205c

θe(HCH) 115.1 116.2 116.1c

VCI/MultiR-PES2 VCI/MultiR-PES1 VCI/direct 3MR

r0(CH) 1.117 1.117 1.117 1.117d

r0(CO) 1.213 1.213 1.214 1.207d

θ0(HCH) 116.2 116.2 116.1 116.2d

It is noteworthy that MultiR-PES2 represented in terms of
B3LYP normal coordinates yields the results with miniscule
errors for both H2O and H2CO. Table 4 presents the zero-
point averaged geometries based on the VCI wavefunction
obtained from the two MultiR-PESs and direct 3MR-PES
for H2O and H2CO, together with the equilibrium geometry
determined at the B3LYP/cc-pVDZ and CCSD(T)/cc-pVTZ
level of theory, and the experimental values. The zero-point
averaged geometries obtained from the three PES are all
found identical, indicating that the deviation of the equilib-
rium geometries at the B3LYP/cc-pVDZ and CCSD(T)/cc-
pVTZ is circumvented through the PES scan. The result-
ing zero-point averaged geometry is in good agreement with
the experimental values for both H2O and H2CO. This fact
implies that a significant computational saving can be achieved
using the normal coordinates of a lower level of theory bypass-
ing the geometry optimization and the Hessian calculation at
the higher level of theory.

4 Conclusions

With the intrinsic mode coupling terms presented and imple-
mented in this work, the nMR-PES is generated from a set
of piecewise reduced dimensional PEFs, each of which can
be evaluated by separate and approximate functional form
and/or electronic structure method, enabling an optimum
control of accuracy–cost trade-off. Three types of functional
forms have been explored in representing the piecewise PEFs,
i.e., direct PEF (a grid representation), spline interpolation
function, and Taylor expansion PEF. QFF, which is a Taylor
expansion PEF truncated at the fourth order, is used in the
context of multiresolution PES, and has been shown to be

highly cost-effective. The newly proposed index provides
rapid estimates of the strengths of the mode coupling terms
in advance of full calculations of the PES. These indices will
be crucial in larger systems, of which the number of mode-
coupling terms is large.

The applications to H2O and H2CO have attested to the
proposed method’s effectiveness. Multiresolution PES for
these molecules has been constructed by combining the mode
coupling terms represented in various resolutions. With the
aid of the newly proposed index, the mode coupling terms,
classified into five categories, have been assigned their reso-
lution according to the importance. The less important terms
have been approximated by progressively coarser-grid spline
functions determined at lower level of electronic structure
theory. The “very weak” terms were expressed by the QFF.
These multiresolution PEFs have enabled a remarkable
reduction in computational cost without notable loss of accu-
racy. The most efficient scheme has reproduced the vibra-
tional frequencies of formaldehyde obtained from 3MR-PES
with less than 10% of the cost of the conventional calcu-
lation with a mean absolute error less than 10 cm−1. The
use of normal coordinates determined by a lower level of
theory (i.e., B3LYP/cc-pVDZ) has also been explored in
defining the PES and in the vibrational state calculations.
This scheme is found useful which enables a computational
reduction bypassing the geometry optimization and Hessian
calculations at a higher level of theory without losing the
accuracy.
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Appendix A: On Eq. (3)

Assume that Eq. (3) holds for each of the mode coupling term
up to the (m − 1)-th order. Then, the m-mode coupling term
with Qim = 0 reads,

Vim (Qi1, . . . , Qim−1 , 0) = V (0, . . . , Qi1 , . . . , Qim = 0,

. . . , 0)−
m−1∑

l=1

∑

il∈im−1

Vil (Qi1, . . . , Qil ). (A.1)

Note that the compound index il that includes im can be
removed from the summation in the second term because
Vil is zero. From Eq. (3), Vim−1 is written as,

Vim−1(Qi1, . . . , Qim−1) = V (0, . . . , Qi1 , . . . ,

Qim−1 , . . . , 0)−
m−2∑

l=1

∑

il∈im−1

Vil (Qi1, . . . , Qil ). (A.2)

Substituting,

m−1∑

l=1

∑

il∈im−1

Vil =
m−2∑

l=1

∑

il∈im−1

Vil + Vim−1 (A.3)

into Eq. (A.1) and using Eq. (A.2), we find,

Vim (Qi1, . . . , Qim−1 , 0) = Vim−1 − Vim−1 = 0. (A.4)

It can be proven that Vim is zero if any Qik = 0 by simply
exchanging the indices ik and im . Thus, if Eq. (3) holds for
each mode coupling term up to the (m − 1)-th order, it also
holds for the m-th order coupling terms.

Since Eq. (3) is evident for the one-mode term (m = 1),
it is deduced that Eq. (3) holds for every m.
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